

COST Action FP1405

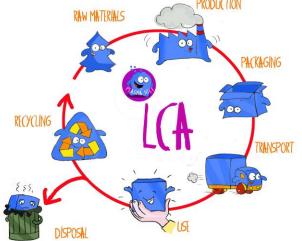
Active and intelligent fibre-based packaging – innovation and market introduction

Novel bio-based materials for active and intelligent packaging

Dr. Johanna Lahti and M.Sc. Taina Kamppuri Tampere University of Technology

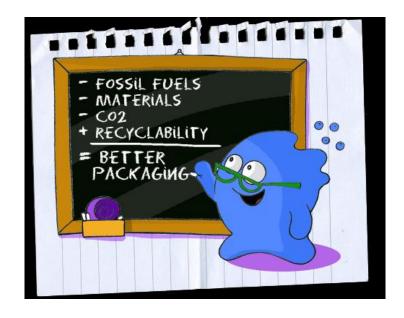
COST is supported by the EU Framework Programme Horizon 2020

Contents


- Introduction
- Biopolymers
- Potential and challenges of bio-based materials
- Conclusions

Introduction: Bioeconomy

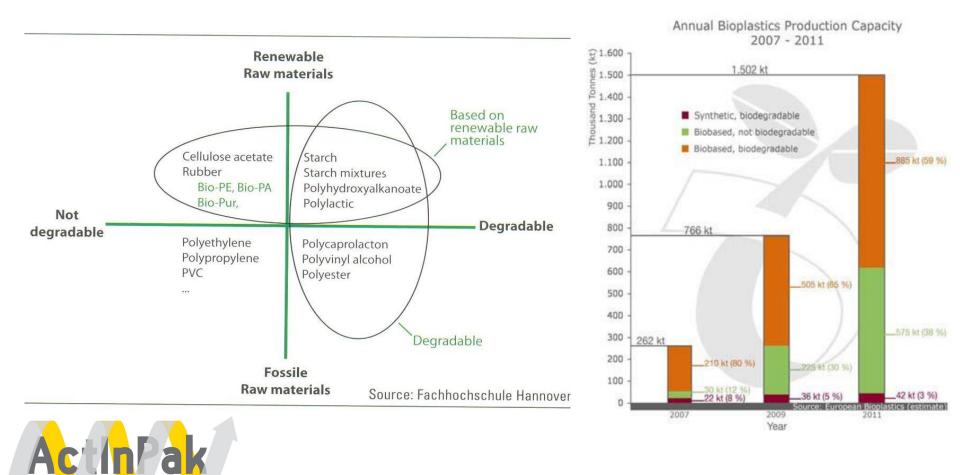
- Bioeconomy is based on the shift from fossil to renewable raw materials to respond to the challenges of climate change, ecological scarcity and depletion of natural resources.
- It means production that utilises renewable raw materials and develops innovations and tecnologies based on that
- **Packaging** plays an important role i bioeconomy.

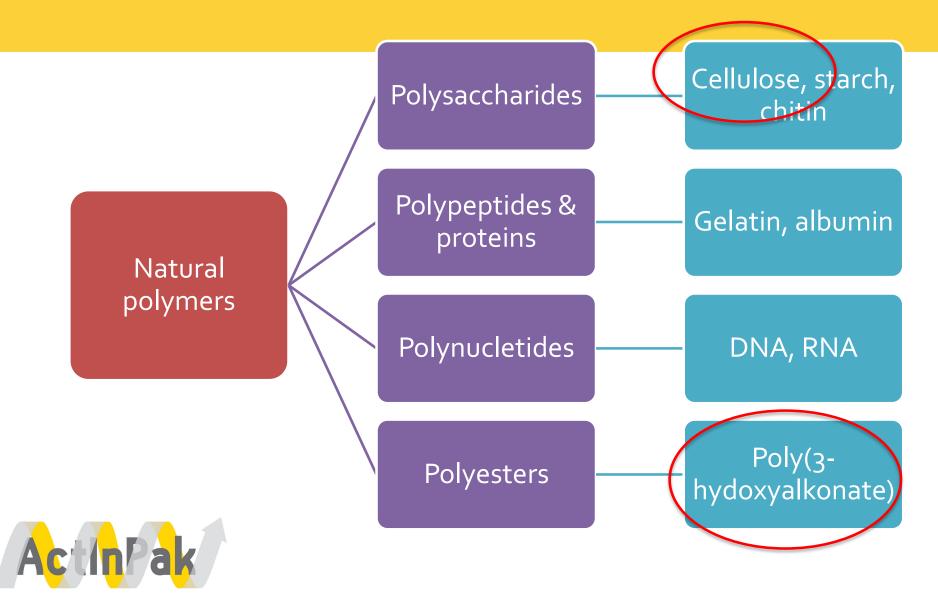


Introduction: Today's package development

- Packaging materials are usually multilayer structures
 - "Less is more" optimisation of materials
 - Lighter packages save energy and environment
- Circular economy: biodegradability, compostability, environmentally friendly, recyclability, re-use....
 - Renewable alternatives for oil-based (non renewable) materials
- Demands for packaging industry (e.g.):
 - Internet shopping is increasing
 - Delivery chains are evolving
 - Food losses should be prevented
 - Product safety
 - Active and intelligent solutions

Introduction: A&I packaging


- Most of the current active or intelligent packaging solutions are plastic-based, so there is a clear demand for renewable and sustainable solutions to create new packaging materials and concepts.
- The use of **bio-based materials** in packaging decreases the dependence on fossil fuels. Wood based biomass that is available in a large scale offers attractive "green" polymers.
- Also biopolymers that are based on agricultural or other waste streams offer interesting alternatives for traditional oil-based polymers.



Classification of natural polymers <u>based</u> on raw materials

Classification of natural polymers <u>based</u> on structure

Bio-based materials for packages

- Wood-based materials like cellulose and other biopolymers provide new alternatives for packaging applications
- Example: Biodegradable packaging material
 - Paper or board + biopolymer (PHA) based on plant waste

food pac

Ref. www.tut.fi, www.bio-on.it

Preparation of cellulose and cellulose/lignin films

- Biocelsol-process is an enzyme-catalysed water-based cellulose dissolution method without any hazardous chemicals.
 - Dissolving pulp is pre-treated with cellulose-specific enzymes
 - Pre-treated cellulose is dissolved into water-based sodium zincate solvent through freezing-melting cycle
 - Films are formed with a lab scale hand coater and coagulated in mild sulfuric acid

Processed into **pulp**

Treated by enzymes

EG

Dissolved into **solvent**

Coagulated into Films

Softwood

Cellulose/lignin film

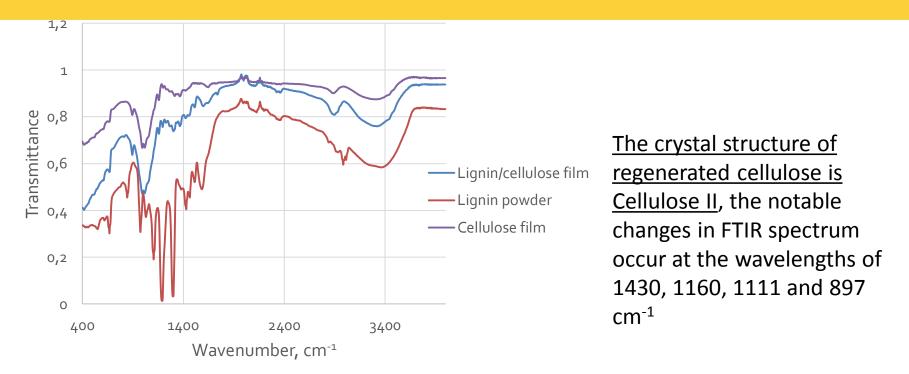
Mechanical properties of cellulose film

Sample		Thickness, μm	Tenacity, MPa	Elongation at break, %	Ref.
Cellulose film (NaOH/ZnO)	DRY	30 - 37	107	26.8	This work*
Cellophane	DRY	20-40	125	22	а
Experimental cellulose film (NaOH/urea)	DRY	70 ± 6	40	4	b
Experimental cellulose/starch, ionic liquid	DRY		32	96	С

*The thickness was measured according to ISO 4593:1999. The mechanical properties of the films was determined according to ISO 527-3:1998 by using Instron 5544 machine at institute of Chemical fibres, Poland

a) Navard (2012) The European Polysaccharide Network of Excellence (EPNOE), DOI 10.1007/978-3-7091-0421-7 b) Han, Yan, Chen, Li and Bangal (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydrate Polymers 83: 966-972.

c) Wu, Wang, Li, Li and Wang (2009) Green composite films' prepared from cellulose strach and lignin in room tem<mark>pe</mark>rature ionic liquid. Bioresource Technology 100: 2569-2574

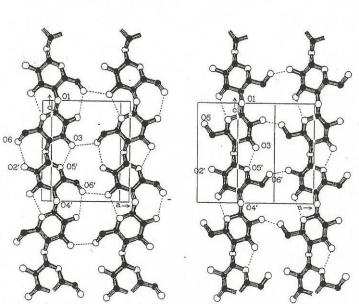

Oxygen permeability

Sample	Thickness, μm	OTR,	Ref.
		ml m ⁻² day ⁻¹	
Cellulose	32 ± 2	8	This work
Cellophane	21	3	a
MFC	21	17	b
Polyester	25	50 – 130	С
EVOH	25	3 - 5	С
Polyethylene LD	25	7800	С
Polyethylene HD	25	2600	С

References:

- a) Kjellgren and Engström (2006) Influence of base paper on the barrier properties of chitosan-coated paper. Nordic Pulp Pap Res J 21(5):685–689. DOI 10.3183/NPPRJ-2006-21-05-p685-689
- b) Syverud and Stenius (2009) Strength and barrier properties of MFC films. Cellulose 16:75-85. DOI 10.1007/s10570-008-9244-2
 - Parry (1993) Principles and applications of modified atmosphere packaging of foods. Chapman & Hall, Suffolk

Chemical structure of cellulose and cellulose/lignin films

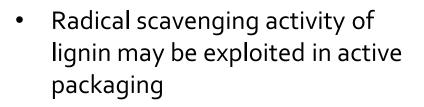


The peaks of cellulose and lignin are overlapping, but phenolic hydroxyl groups of the lignin sample show characteristic peaks at the range of 1800 – 1300 nm that are seen in our sample in 1583, 1511 and 1428 cm⁻¹ that are not seen in the cellulose sample.

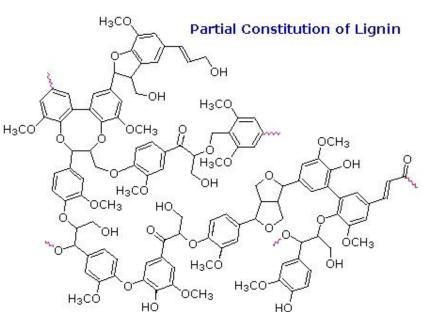
Potential of cellulose as intelligent packaging

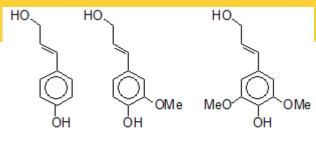
- Piezoelectricity is a fundamental property of cellulose
- Piezoelectricity is displayed by crystal structure lacking center symmetry
- The crystal structure of Cellulose II is monoclinic which is non-centrosymmetric
- Inherent piezoelectricity of cellulose film may be used as a sensor and an actuator in intelligent packaging

cellulose II


cellulose I

Klemm et al.(1998) *Comprehensive Cellulose Chemistry.* Weinheim: Wiley-VCH.

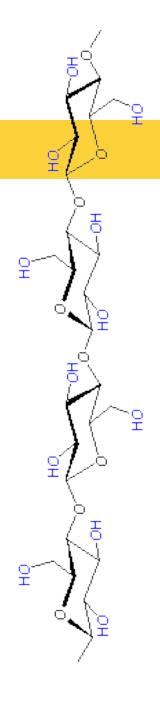



Potential of lignin as antioxidant in active packaging

- Lignin is the second most abundant natural polymer
- Complex chemical structure with aromatic rings, monomers are phenyl propanes
- Highly branched
- Antioxidant activity is based on polyphenolic structure

• Lignin has shown also antibacterial properties

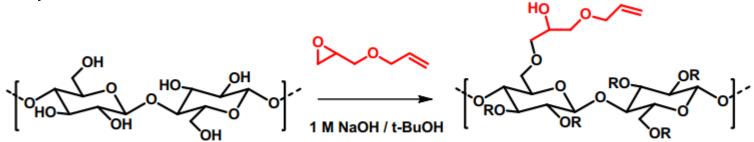
Cournaryl Alcohol


ConiferyIAlcohol

Syringyl Alcohol

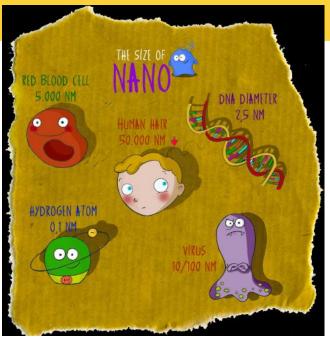
Figure 1: The three phenyl propane monomers in lignin

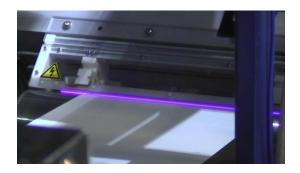
Challenges with biopolymers


- Cellulose is a hydrophilic material -It absorbs moisture also from air
- For example cellulose swell in contact with water
- → The mechanical and barrier properties will weaken due to absorbed water
- Also some other biopolymers are moisture sensitive (like PLA), which restricts their use in certain applications

Chemical modification of cellulose

- **Dissolving pulp can be chemically modified** with allyl glycidyl ether to obtain 3-allyoxy-2-hydroxypropyl substituted cellulose
- The substituents have the <u>reactive carbon double bonds</u>, which makes it possible to <u>further attach functional</u> <u>groups</u> to the films

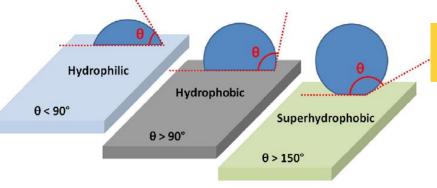

Synthesis of 3-allyloxy-2-hydroxypropyl A ether derivatives of cellulose. R=H or substituted with A groups


Ref. Vehviläinen, Kamppuri et al. (2015) Regeneration of fibres from alkaline solution containing enzyme-treated 3-allyloxy-2-hydroxypropyl substituted cellulose. Cellulose 22:2271-2282

Nanotechnology for surface modification 1(2)

- Thin nanoscale coatings/layers
 - (~ 10-100 nm)
 - Good barrier properties with very thin layers
 - Source reduction: Less material is needed
 - Replacement of materials like Al or oil-based polymers
- Several techniqures like ALD (Atomic Layer Deposition), PVD (Physical Vapour Deposition) and LFS (Liquid Flame Spray)

Ref. www.tut.fi/plasmanice


Nanotechnology for surface modification 2(2)

- Surface modification and generation of new functionalities
 - Repellency/Absorbency
 - Adhesion properties
 - Self-cleaning
 - Surface energy patterning
 - Adjusted wettability
 - ≻ Etc. etc.

Several applications:

- Packaging
- Textiles
- Printed electronics
- Flexible photovoltaics
- Microfluidics....

Ref: http://nanomend.eu/

Conclusions

- Wood-based polymers and other biopolymers that are based on renewable raw materials offer interesting alternatives for packaging industry
- Packaging films and coatings for paper and board
- Renewable materials for A&I solutions

Ref.: Sitra, Heureka

Johanna Lahti & Taina Kamppuri Tampere University of Technology

johanna.lahti@tut.fi taina.kamppuri@tut.fi

Actin Pak

Further information:

- www.tut.fi/mol
- www.tut.fi/plasmanice
- http://nanomend.eu/
- www.tut.fi/ROLLIPS
- http://www.actinpak.eu/
- www.uusipuu.fi